Collapse, environment, and society

Karl W. Butzer
Department of Geography and the Environment, University of Texas at Austin, Austin, TX 78712

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 1996.

Edited by B. L. Turner, Arizona State University, Tempe, AZ, and approved December 2, 2011 (received for review September 10, 2011)

Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas.

Rise and Fall of Civilizations

There has been inordinate fascination with societal collapse, an issue outlined in the introduction to this Special Feature (1). The concept has intuitive appeal but ambiguous meaning, and has been applied to states, nations, or complex societies, in the sense that such entities rise and flourish, but eventually disintegrate and fail. Sociopolitical organization, economic weakness, and environmental or demographic trends have received emphasis. Change takes a long-term cyclic rhythm, at first organizing, then expanding and integrating, before sinking in disorder. Systemic failure in one synergistic network may destabilize adjacent structures. Other open questions concern the scale of collapse, the time frames involved, the key elements that fail, and whether the outcome is cataclysmic or eventually allows restructuring. Not all breakdowns are alike.

This challenging concept and its attendant issues were first articulated by the Islamic historian Ibn Khaldun [after 1377 common era (CE)] (2), who identified the periodic rise and fall of dynasties as macrostructures in the history of sedentary civilizations. Beginning with the Roman Empire and continuing with its Islamic counterparts, he attributed demise to rural rebellions or outside invaders confronting a ruling hierarchy that had forfeited the solidarity of its supporters. Rather than a global history, Khaldun’s work was an implicit critique of Islamic society that went beyond theological arguments. He faulted the greed and selfishness that came with power, at the expense of the common good.

Khaldun’s writings were poorly disseminated, and Western interest in collapse was initially stimulated by Edward Gibbon (3), who, with laborious detail, attributed the decline and fall of the Roman Empire to moral decay and barbarian invasions, much like his predecessor had. Gibbon observed that Roman collapse had changed the sociopolitical map of Europe and the Mediterranean world, a transformation that continues to generate a secondary literature. Although Gibbon held to an ethical dimension, he recognized that Roman collapse could not be separated from historical processes that shaped the dynamic context of its time, and he was uneasy about the potential future failure of even more enlightened and powerful states.

When the archaeological discoveries of the 19th century revealed a periodic failure of kingdoms and empires across the Near East, the collapse model became a durable theme of social and historical discourse. However, the message shifted: whereas ephemeral Eastern civilizations regularly dissolved in chaos, the comparative durability of ancient Rome improved the prospect that Western Europe might endure indefinitely.

With the proliferation of biological analogues in the mid-1800s, ontogenetic or evolutionary qualities such as growth, maturity, and decline were used to interpret historical macrostructures. For social Darwinists, material culture became an index for the increasing achievements of civilization, in an era when the Industrial Revolution exuded the driving force of “progress.” The West was seen as a new empire, wherein technology would assure unlimited economic growth. Problems could and would be fixed by technological innovation.

Oswald Spengler’s The Decline of the West (1918–1922) (4) was written in the wake of a world war and before the Nazi ascendance. He redefined ontology in humanistic terms that included premonitions of the authoritarian state. His “winter” would coincide with a demise of abstract thought, accompanied by empowerment of the rich, and the rise of caesarian, demagogic leaders. Spengler saw a society in deep crisis, and his prescient but pessimistic ideas anticipated the horrors of fascism and Stalinism. His insights remain pertinent for modeling alternative pathways of political resilience in the wake of collapse.

By contrast, the French authors of the Annales School chose a nonlinear track to capture the rich detail of regional histories, and to develop an interdisciplinary method in which millennial demographic waves served as a bellwether of key interactive processes (5–7). Disjunctions were attributed to competing economic systems, long-distance networking, warfare, or pandemics (8), ideas that gave impetus to world-system history (9–11). The annalistes eventually turned to more humanistic studies that introduced
environmental variability as an integral part of historical process (12, 13).

Notable is the increasing diversity of perspectives about collapse, ranging initially from ethical and social, to ideological or ethnocentric, and eventually to interdisciplinary and systemic. The underlying ideas continue to echo. The salient concern today is the interface between environment and society, to require greater attention to social science and humanities perspectives. There has indeed been rapid growth of theoretical sophistication in regard to complexity and network theory, agent-based models, resilience theory, or tipping points. However, the challenge for a scientific study of historical collapse remains to develop comprehensive, integrated or coupled models, drawing upon the implications of qualitative narratives that go well beyond routine social science categories, to better incorporate the complexity of human societies (1).

Current research in historical collapse suggests a primary fascination with climatic change and environmental degradation as primary agents of change, but at the cost of less attention to the necessary cross-disciplinary integration. Indeed, the recent return to environmentalism is not about a fresh interest in the environment–society interface, but a continuing failure to appreciate the complexity of such interrelationships. At issue is not whether climatic change is relevant for sociohistorical change, but how we can deal more objectively with coupled systems that include a great tapestry of variables, among which climatically triggered environmental change is undeniably important. The SI Text reviews the problematic revival of environmental determinism in regard to the Akkadian collapse, as well as the purported societal passivity about anthropogenic degradation and potential future collapse. The Old World case studies range from early historical times to the collapse. The Old World case studies present in the various research articles of this Special Feature of PNAS. Examined at different levels of detail, these cases help single out more important, interactive variables, to estimate time scales for transformation, and explore the roles of preconditioning, triggering and reconstituting processes. The ultimate goal would be to design complex simulation models that incorporate sophisticated societal components and that can be validated (1).

This presentation attempts to transcend simple assumptions or truisms and monotonicity, by dissecting historical examples so as to illustrate the full palette of social-ecological variables and why they are so important for resilience within coupled systems. Some current models for change pay careful attention to biophysical variables that may affect feedbacks, but then go on to simply fit a group of societal factors into a few preconceived categories, supported by tertiary digests of no better than mixed value, to “explain” a particular outcome by assumed, axiomatic processes instead. Our five case studies (later and in the SI Text) identify important, qualitative variables and track their roles and interplay in systemic outcomes. Although difficult to simulate, societal inputs and feedbacks are more common than environmental variables. The case studies also offer temporal parameters for transformation.

Anatomy of a Collapse: Old Kingdom Egypt

The historical cycle of the Egyptian Old Kingdom (14) closed shortly after the improbably long reign of Pepi II [2278–2184 before CE (BCE)], the last significant ruler of the sixth Dynasty. Such long periods of rule can lead to issues of succession, and royal authority promptly collapsed at the death of Pepi II, judging by a cluster of approximately 20 powerless kinglets, marking the seventh-eighth dynasties, a very short time span, perhaps from 2181 to 2160 BCE. Egypt broke apart into several feuding provincial powers, controlled by members of the old elite or a novel genre of warlords, to be reunited through force of arms after approximately 2040 BCE by a new, 11th Dynasty.

Didactic Literature. An interval of approximately 120 to 200 y (ref. 15, table 57; ref. 16, p 464), known as the First Intermediate Period (dynasties 9–10), represents a radical sociopolitical transformation, documented by written records and archeology. Instead of burial near Memphis, the rich or powerful began to build rock tombs near their provincial landholdings. Wealth was dispersed to new centers, with economic growth, artistic and cultural change, and a shift to a different style of social complexity (17). Some of the elite were deeply disturbed by the course of events, leading to a body of didactic literature (labeled as instructions, lamentations, or prophecies) that became literary classics during the Middle and New Kingdoms, when they were used in the schooling of young scribes.

Few such tracts have the necessary authenticity of historical descriptions, but they do represent an insider perspective on Egyptian cultural memory of a painful transition (ref. 18, p. 109–113). The autobiography of Ankhifif, a southern provincial governor [ninth Dynasty, ~2120 (7) BCE], was inscribed in a rock-cut tomb. The full list of woes enumerated had not been previously used in literary convention, and was not a mere figure of speech. The text elliptically reports rampant civil war, famine, and starvation caused by Nile failure, mass dying or aimless dislocation of starving people, cannibalism (sic),

wanton tomb or cemetery violations, and dispossession of the elite. Other, less authentic admonitions of the era amplify the themes of poverty, anarchy, and the upending of social roles. The basic message is a breakdown of the “cosmic order” and social justice, perhaps in the wake of an environmental disaster. However one chooses to interpret such writings, there was no central government, while justice, order, or respect for tradition fell by the wayside during the nadir of collapse, presumably the seventh to eighth dynasties.

Onset of Economic Decline. During the sixth dynasty, central authority was steadily diluted by privileges granted to courtiers around the throne. Mortuary temples were already built for pharaohs of the fourth dynasty, institutions that engaged groups of priests, paid by the treasury in perpetuity, whereas such foundations and their farms were exempt from taxes, much as nonprofit corporations are today. Gradually such privileges were accorded to other powerful men at court, a pattern accelerating during sixth Dynasty times until a significant part of the prime lands was removed from the fiscal rolls, even as the state continued to support the upkeep of mortuary cults (“entitlements”).

Economic decline also resulted from breakdown of the vital foreign trade, mainly carried out over the entrepot of Byblos (now Jubail, Lebanon). Cedar and fir were imported for shipbuilding, or luxury goods such as wine and olive oil, for elite use. Pharaoh is likely to have profited greatly from such transactions, but archeology shows that, during the reign of Pepi II, Byblos was destroyed by the Akkadians, its Egyptian imports ending abruptly (19) and then interrupted for 250 y. That would have cut off a critical source of royal revenue, weakening pharaoh’s personal power.

Environmental Trigger. Inferred from the admonitions, Nile failures are quite plausible in view of the limnological record of Lake Turkana: fed to approximately 90% by the Omo watershed in mountainous western Ethiopia, an area with climatic conditions similar to those of the Blue Nile. Prominent and dated beach ridges indicate a sporadic, early to mid-Holocene overflow of this nonoutlet lake, through a series of swamps to the Sobat and White Nile rivers (20). Together with diatom assemblages, alkalinity levels, and Omo delta silicates, the lake levels offer a proxy record for Blue Nile behavior, but the chronology is only approximate (21). A dated core in Omo material at approximately 2800 (calibrated years) BCE was followed by an abrupt change in water chemistry, to a closed, alkaline-saline lake, approximately 2400 BCE. This coincided with a late fourth Dynasty shift to downcutting (i.e., channel incision) of the Nile at Giza.
that social anarchy is difficult to contain when institutional structures falter. Amid social chaos and insecurity analogous to that of modern Somalia, ancient Egypt experienced political simplification as the contestants repeatedly resorted to armed force.

A concatenation of triggering economic, subsistence, political, and social forces probably drove Egypt across a threshold of instability, setting in train a downward spiral of cascading feedbacks. In the end, a semblance of the cosmic order was restored, with the support of new elites, but with the heavy hand of military men, even as the echoes of civil war continued to reverberate until the authoritarian rule of the Pyramid Age was reinstated (ref. 17; pp. 118–119 and 130–131). The initial breakdown took a few decades, but the processes of collapse played out on a centennial scale, as did reconstitution (16).

This detailed analysis, with the advantage of a body of fragmentary but rich, written records, helps illustrate the true complexity of collapse. It involved more than an impersonal network of systemic interactions. It encompassed people, admitted at cross purposes and with incomplete information, who ultimately sought to bring their country back together, consonant with their vision of the cosmic order. In the persons of military leaders and conflicted elites, one can gain a glimpse of the ambiguous notions that political and social resilience imply.

Autopsy of Another Collapse: New Kingdom Egypt

A second historical example better illuminates the socioeconomic components and processes of national failure, with the important benefit of specific economic records. Under the 20th Dynasty (∼1187–1064 BCE) (27, 28), Egypt devolved from a powerful state to a divided nation in which authority had been usurped by a high priesthood that controlled the well-endowed temples as well as military forces, ready to engage in civil war. However, instead of recovery, Egypt came to be ruled by foreign dynasties.

When Did Decline Begin?

The pharaoh Merenptah shipped a great amount of grain to alleviate famine in the waving Hittite empire at approximately 1210 BCE, suggesting a major drought in Anatolia but food abundance in the Nile Valley. Then, in 1207, he had to fend off a determined invasion of Libyans in alliance with several “Sea Peoples,” perhaps mobilized by the same environmental crisis in western Anatolia at the end of the 13th century (26).

Three further foreign onslaughts confronted Ramesses III (1185–1153 BCE) of the 20th dynasty. He managed to defeat the fleet of Sea Peoples amid the Delta marshes in 1174. However, these powerful raiders had already destroyed all other states of the eastern Mediterranean, including Egyptian hegemony in the Levant, to terminate traditional commercial relationships, with implications for widespread economic depression (26). Although Ramesses III still carried out a major building program and sent an expedition to Punt, he made an unusual offering to the Nile in 1179, to propitiate the river and seek good floods (29). High-level malfeasance and corruption surfaced in 1157, and the king was victim to a harem conspiracy at the time of his death.

The severity of gathering economic problems can be gauged by unprecedented strikes and rioting, because of insufficient food and unpaid wages for the royal artisans (in 1156). The vizier could turn up only half the wheat needed, because the temple storage facilities were empty. The food supply had failed, the king’s authority was brazenly challenged, and Egypt was patently in decline.

Process of Devolution. On the accession of the king’s son (Ramesses IV) (30), the royal workmen were paid off with food and silver, not by the king’s treasury but by representatives of the High Priest (ref. 28, p. 607). Conflict between institutions is implied. Rolling food shortages continued, with runaway inflation. Grain prices, with respect to nonfood products, had begun to increase in 1170, eventually increasing to eight times and occasionally 24 times the standard price. Inflation peaked at approximately 1130, stabilizing at approximately 1110, with food prices falling rapidly at approximately 1100 to 1070 (∼1110 BCE). This was the first subsistence crisis actually recorded in accounting books (∼1170–1110 BCE). Hardship was exacerbated by insecurity caused by Libyan marauders (1117–1101), favoring rural flight and declining productivity.

Royal power and prestige were fading. Rock for monumental construction was no longer quarried after 1151, and an 1135 expedition to the turquoise mines of Sinai was the last. A new High Priest had himself represented the same size as the king (∼1113), suggesting a more direct appropriation of power. Looting of the royal and private tombs at Thebes was underway with high-level complicity, and became scandalous under Ramesses XI (1099–1069 BCE), who did not use his completed tomb in the Valley of the Kings, and apparently chose to be buried in northern Egypt. This last monarch attempted to avoid the inevitable, calling in the Egyptian viceroy from Nubia, who battled the High Priest’s army and, interestingly, assumed the notable title Overseer of the Royal Granaries (1086 BCE), while controlling southern Egypt for a decade.

Thereafter, a new High Priest disenfranchised the pharaoh as the provider of life and safeguard of the cosmic order, declaring him a simple agent of the...
supreme god Amon (32). By 1075, Ramesses XI was a mere figurehead, residing in the Delta, with Upper Egypt ruled by the High Priest in the name of Amon, while Nubia became independent. Usurpation had been completed and Egypt was divided.

Evaluation. The subsistence crises from 1170 to 1110 were preconditioned by (i) debilitating wars to repel invaders, (ii) the loss of Mediterranean commerce, (iii) official corruption, and (iv) a lack of support from the priesthood controlling the temple granaries. However, the repeated waves of wild inflation strongly suggest that famines were triggered by Nile failures (33). At Memphis, floods had declined by approximately 6 m from approximately 1300 to 1100 BCE, a trend that was paralleled in Nubia, where sand dunes swept the floodplain and agriculture had to be abandoned (22).

However, decline of the redistributive economy continued even after the famines were overcome, while Egypt was divided as a state and fragmented as a country. Unlike the ad hominem literature of the First Intermediate Period, which espoused a return to traditional cosmic values, during the 20th Dynasty, there was no persuasive exhortation toward a moral high ground (18). Instead there is the “Tale of Woe,” which laments arbitrary rule, violence, excessive tax demands, falsified units of measure, hunger, and the breakdown of the social contract (ref. 34 and ref. 18, pp. 291–293). Egypt was impoverished and demoralized, and at the end of the new kingdom, swelling disaster did not provoke political or social resilience. Instead the ascendant military–priestly caste exhibited little vision. The once integrative national bureaucracy had failed amid pervasive corruption, giving way to a chaotic and superstition-driven theocracy that paralleled in Nubia, where sand floods had declined annually, to optimize the use of available water. A great canal, the Nahrawan, was led from the Tigris near Sumarra to irrigate the eastern side of the river. However, the Sasanian network had begun to deteriorate in the wake of catastrophic floods after 628 CE that destroyed or silted up transverse canals, as the Tigris shifted and caused the growth of a vast swamp, accompanied by a high water table favoring salinization of the lowest alluvial plain. After the Conquest, the Sasanid system was abandoned and new master canals were cut along different, more traditional trajectories, but waterering less than half of its previous area. This catastrophic disjuncture suggests fundamental social disruption in the wake of the Arab Conquest, as the administrative superstructure was replaced by a new elite, probably unfamiliar with Sasanid methods (ref. 35, p. 218).

However, Mesopotamia promptly recovered and, after 750 CE, became the heartland of the powerful Abbasid Empire, based on a modest recovery of the irrigation system and the tribute from far-flung provinces. It reached its apogee under the legendary Harun al-Rashid (786–809 CE) but then began to decline as a result of wasteful expenditures and rapacious tax farming (40). Late Abbasid misgovernment and weakening imperial hegemony were punctuated by serious rebellions and the wanton Seljuk destruction of Khuzistan at approximately 1015 CE (41), until the economy was in full decline and the Nahrawan canal ceased to function (35). Islamic historians and poets have eulogized the size, wealth, and scholarship of Baghdad at the moment of its demise and depopulation in 1258, but such descriptions actually harked back 300 y, to the heyday of Abbasid civilization (42). Instead the archaeological evidence shows that the irrigation system had collapsed well before any Mongol destruction (35), and was not reconstructed until the 20th century. Unfortunately is that the early Islamic archives of Iraq had only been partially studied before their destruction by fire in 2003.

There were then two Islamic collapses in Mesopotamia, the first in the wake of the Arab Conquest at approximately 640 CE, the second beginning in the 10th century and concluding with Mongol plundering of what was left of Baghdad in 1258 CE. The first collapse spanned approximately a century, the second as long as 300 y, and the responsible processes were very different. However, consistent themes were war, land use change, and irrigation, or fiscal mismanagement.

The collapse of new kingdom Egypt and of Islamic Mesopotamia involved the persons and sources of indigenous power, both worldly and divine, and the external forces of chaos may have weighed heavily on sociocultural consciousness. The outcomes probably were traumatic, but in the end, Egypt, as a society and an environment, was more resilient than Mesopotamia and continued to function with a modicum of success. The failure of the irrigation society of Mesopotamia was an ecological tragedy, leading to the wasteland reported by 19th century travelers (43).

Integration: A Didactic Model for Historical Collapse

Discourse on historical collapse has tended to be macroscopic and generalizing, based on limited comparative research. Little attention was given to the politicoeconomic markers of state devolution, or the strategic solutions that may have been attempted but failed. Rarely considered were the attributes of cultural identity that might have been rejected or transformed. The preceding analyses emphasize the wide range of variables involved, the complicated time frames, and the roles of textual or insider information.

Interpreted with the aid of a simplified, heuristic model (Fig. 1), the case studies examined here and those of Butzer (1170–1110) suggest that the complexity of the social–ecological interface is as much about interrelationships as it is about the identification of stressors. Related questions are comprehensively discussed later, but, being grounded in historical examples, a
A conceptual model for historical collapse, situating the variables and processes of stress and interaction discussed in the text. Timescales range from multidecadal to centennial. Alternate pathways point to important qualities of resilience. Red superscripts identify stages that are elaborated by blue subscripts. Environmental components (red within boxes) are secondary to sociopolitical factors.

word of caution is due that the insights of the model are not applicable to current issues without modification.

Inputs, Triggers, and interactive Variables. The process of breakdown typically begins with economic or fiscal decline caused by external and internal inputs, some of which are long-term and pre-condition a system to suboptimal performance or weakened social-ecological response. Others are short-term but intense, serving as triggers (or, in combination, as concatenations) for a deep economic crisis provoking rapid change. Such inputs may activate cascading (positive) feedbacks that sustain or enhance negative trends, to create instability in the early stages of breakdown. If instead there is a resilient response, leading to beneficial readaptations, devolution may be slowed or stabilized. In the longer term, such pathways may allow reconstitution and reconstruction or, alternatively, continuing breakdown and eventual collapse.

Degradation of soils or other biotic resources (deforestation, ground-cover removal, soil erosion, or groundwater depletion and salinization) represents incremental damage that lowers thresholds for more rapid down-the-line change, particularly in conjunction with incompetent administration, destructive land use, or rural flight. Declining resource productivity increases pressure on the environment and may pre-condition an environmental subsystem for failure.

Effective climatic inputs are most likely to be high-recurrence perturbations, such as excessive rains or floods, and more persistent, decadal anomalies (such as severe droughts) that serve as triggering mechanisms, impacting a stressed or degraded environment to unleash more catastrophic forms of hydrological behavior or slope failure (44–46). Climatic variables can also pre-condition the environment by accelerating degradation, or disastrous floods may provoke outbreaks of epidemic disease. Population decline or the disintegration of economic networks may re-inforce environmental feedbacks, compromising food production as well as access to external information, food supplies, markets, and raw materials.

However, the case studies (SI Text) indicate that environmental inputs mainly played supporting roles in a train of events set in motion by institutional incompetence or corruption, civil strife and insecurity, or pandemics. Here government failure is likely to pre-condition the system, with external war as another potential trigger. Protracted conflict may well be destructive for infrastructure, food production, manufacturing, market access, and demographic success. It can also bring sociopolitical domination of one group by another, enslavement, rural insecurity, and socioeconomic or ethnic conflict, stimulating everyday violence and rural abandonment.

Finally, it bears emphasizing that decline or collapse can be either consequence or cause of sociopolitical devolution. It may undermine traditional customs, law, and institutions, particularly in the case of conflict between different elite groups, so as to reduce sociocultural resilience. Outcomes are difficult to predict because of the interplay of multiple, cascading, or buffering feedbacks (Fig. 1).

Time Frames. Duration of the processes favoring decline or recovery helps to identify the processes of devolution as well as the elasticity of resilience. Drawing from the experience of the historical case studies, Fig. 1 suggests that a preconditioning economic decline typically spans decades or centuries. Contrary to frequent claims of “abrupt” collapse, the triggers that bring economic crisis are more likely to operate at a multidecadal scale. The first stage of stabilization or instability may also be fairly rapid, whereas a more complex reconstitution or complete breakdown is likely to span a century or more. Time frames would also be affected by the absence of rapid or sustained means of communication in earlier historical eras.

Environmental Resilience. “Resilience” of human ecosystems can be usefully subdivided into a triad of intersecting environmental, political, and cultural components. Negative feedbacks resist, dampen, or reverse change. Preconditioning factors may also impose a degree of stability. Perhaps little appreciated is that some environmental systems are more resilient than others in regard to anthropogenic or climatic change and their cascading feedbacks.

Politicoeconomic structures in Europe have been less vulnerable to collapse than those of arid lands in the Near East. Great irrigation networks that supported large populations in Mesopotamia were fragile because they are artificial, i.e., relatively homogeneous, managed, and hierarchical systems that require much capital or labor to maintain, and exponentially more to reconstruct. The desert may return after abandonment, not because of damage to the environment but because of human disengagement. Critical here are land tenure, the mobilization of labor, and the...
complexity of large irrigation systems. When rent, tax, or work demands become impossible, Near Eastern peasants have historically abandoned their villages to enter the broad spectrum of semipastoral pursuits that fill the gap between cultivation and fully mobile nomadic herding. Beyond the reach of the tax collector, such semipastoralists reverted to simpler lifeways in what was a fiscal wasteland, but not a deserted landscape. This was the condition of lower Mesopotamia until the late 19th century (43). That is the true meaning of socio-ecological collapse in irrigable, Near Eastern desert environments. Multiple domains and scales of institutional displacement imply fairly resilient “final” regimes (47), i.e., reconstitution will be very difficult.

In southern Europe, by contrast, mixed farming is less specialized but also less productive. Temporary abandonment plays out at intermediate scales in compartmentalized but selected biohabitats. It does not turn the land over to desert, and renewed settlement requires more modest community coordination or start-up investment. In Greece, with great spatial complexity, there were periodic waves of soil erosion caused by climate or land use (48, 49), but urban life and agriculture soon resumed, with the necessary investment to mitigate much past damage. In other words, Mediterranean and many Western agrosystems are relatively stable and less liable to “catastrophic” simplification. Environmental resilience—not impairment—is the basic difference between southern Europe and the Near East in the longue durée of demography and agrarian production. It is not a matter of Eastern decadence or Western cultural fortitude.

What may be true at a large, global scale is more complicated at the regional or local level. Deforestation or land clearance can put diversity at risk, but the often higher inherent diversity of secondary vegetation, with its many commensal plants, may actually impart greater resilience to stressed biotic communities. In northern Greece, the prehistoric pollen record shows that plant diversity was greater in areas of degraded vegetation (50), whereas in Spain, Mediterranean scrub (i.e., monte bajo) offers more nutritious graze, especially after burns, through increased legume dispersal (51). It also opens opportunities for subsequent conversion to olive groves or vineyards. Mediterranean people regard monte bajo not as “waste” but as land in reserve, which is used for local pastoralism and wood gathering, but can be converted to more productive orchards when markets improved, as forestry export from higher latitudes were disturbed by the open nature of Mediterranean woodlands, even though they were looking at old-growth formations (44, 45). Deforestation is therefore not a simple process that can be equated with human degradation, and reforestation with invasive or ornamental trees does not qualify as recovery. Similar misunderstandings can arise about tropical savanna woodlands (52), as to the role of fire, or about the age and origin of grassy mosaics in woodland (53).

Facile generalizations are equally inappropriate in arid lands. The conjoined Tigris/Euphrates floodplain with its radial canal systems is vulnerable to violent floods that destroy riverbank cities (36–38), explode in crevasses, shift courses, overwhelm canals with silt, or raise the water table of desert plains liable to salinization. By contrast, artificial irrigation in Egypt was superimposed on the natural rhythm of existing flood basins, to enhance the height and duration of the inundation while flushing soluble salts downstream.

Egypt could support permanent settlement even with little artificial irrigation, although at a much lower carrying capacity. What was not the case in Mesopotamia, where breakdown of complex canal networks would force wholesale abandonment of agriculture. Such differences underscore the distinct environmental and land use histories of Egypt and Mesopotamia. Environmentally triggered collapse in Egypt, which may have been more short-term and have modest demographic impact, but in Mesopotamia it could be catastrophic.

In specific ecological contexts and at different spatial scales, environmental inputs mobilize certain processes, define thresholds, follow time-paths, and favor outcomes that may be distinctive. Beyond the exotic rivers of the Near East, precipitation anomalies vary spatially and temporally. However, environmentally grounded crises are culturally screened and perceived, so as to affect vulnerability, resilience, and response, as well as the timescales at which underlying processes can be addressed. Environmental elasticity may be critical in the mitigating of collapse, or in the ability of a society to carry on.

Political Resilience. In conjunction with the case studies, analogues from anthropology and political ecology suggest that ruling families and elites tend to support the state, if only in self-interest. The trauma of collapse in ancient kingdoms can be reversed by new dynastic cycles, during which rulers rebuilt their societies with the support of new elite groupings, but not necessarily with the same identity or political center. Whatever the complex rationales of statehood or power, elites can come together to support a new ruler in rebuilding similar or modified administrative and ideological structures. In this way, dynastic systems periodically able to reassert the authority of kingship in Egypt and Mesopotamia.

Repeated simplification and cyclic change in Assyria in approximately 1800 to 1600 BCE is documented and interpreted by Yoffee (54) as a net shift to greater centralization. First, the power-sharing councils of traditional nobility disappeared. Eventually, the generals of the huge army assumed that role, while the traditional kin and landholders were displaced from lower management roles by civil servants, with a work force increasingly formed of non-Assyrian deportees, to favor non-Assyrian cultures and belief systems. In this late Assyrian case, political transformation was not catastrophic but part of a strategic progression that manipulated institutional roles.

States may collapse because of incompetent rulers, but surviving members of the old elites, together with new allies of diverging persuasion, will eventually help pick a new candidate to support. In other words, even in the wake of substantial change, the political class represents a key force of resiliency and potential stabilization, in tandem with the religious establishment. Important is the rallying of elite groups and institutional bureaucracies, perhaps with a shift of ideology. The convergence of such fundamental interests may not be able to halt a downward cycle of collapse, but they are basic to subsequent regeneration through the revival of dynastic ambition, the imposition of law and order, and a redefined symbolic cohesion of national interests.

The darker side of revival is that it may not involve a reassessment or reaffirmation of old ideals embedded in cultural memory. Many or most decisions would be made under stress, with the goal of securing or consolidating power. Disagreements may have been contested by populist demands but are more likely to be settled by military force. Traditional values may fall into oblivion in the course of destructive violence, as the old order falters. In the end, the new elites probably cast their lot with a new military leader, as Spengler foresaw (4), more adept at neutralizing internal or external enemies than championing the higher ideals of governance. Interlinear clues from Egypt and Mesopotamia imply that the emerging social contract is more likely to have been authoritarian than enlightened, with older rules of class distinction and land tenure rigidly enforced. In general, the chances are that an exploitative political economy will not favor conservationist land use (46).

Cultural Resilience. Sociopolitical structures appear to be the most fragile components in collapse of archaic states or traditional societies, in which there was no role for the equivalent of contemporary, community-based structures. The case studies suggest that hierarchical orders were “simplified,” probably with a transfer of authority. Formal institutions, dynasties, national symbols, and states come and go, but was this accompanied by a loss of religious or linguistic identity? Either or both have frequently changed in the
course of human history, without engendering collapse. However, both are critical facets of self-identification and cultural or social memory, and their loss can mark ethnic transformation. Resilience is a tricky quality. It may help resist change, but only up to a certain threshold, beyond which escalating feedbacks can trigger unanticipated social or political transformation.

From Past to Present. Several generalizations can now be drawn from the case studies and discussion of historical collapse:

i) The most common input attribute at an early stage of every breakdown (except possibly Axum) was institutional failure, viz. incompetence, loss of economic networks, corruption, or dynastic crises.

ii) Civil war or invasion was as critical as any form of climatic forcing.

iii) Environmental degradation such as soil erosion is only documented for Axum and the Black Death (see SI Text), in contrast to climatic perturbations that helped trigger breakdowns in Old and New Kingdom Egypt, the Fayum, or Mesopotamia on the eve of the Islamic conquest.

iv) Demographic retraction was prevalent during or after collapse, commonly linked with pestilence. The Black Death is the classic example of a pathogen-driven, catastrophic depopulation.

v) Ideological shifts accompanied collapse in New Kingdom Egypt, the Fayum, Mesopotamia, and Axum, in part overlapping with foreign intrusion or ethnic change.

In other words, poor leadership, administrative dysfunction, and ideological ambivalence appear to be endemic to the processes of collapse. War or climatic perturbations possibly served as triggering mechanisms, but environmental degradation does not appear as a universal variable. Demographic decline was either a causality or a delayed result of change, except for the Black Death. Collapse was a consequence of multiple factors, reinforced by various feedbacks and partly balanced by resilience, with unpredictable outcomes. The comparative importance of societal versus environmental inputs seems to favor the social side.

If the number of case studies is expanded to include others from this Special Feature, it adds only two examples of collapse [Greenland, the Maya (58, 59)], but four instances in which resilience allowed fundamental change without simplification or breakdown (the prehistoric Levant, Ice Age, Colonial Mexico (44, 60–62)). Reviewing subsistence crises in western Europe after approximately 1200 CE identifies food riots, peasant revolts, and wars of religion, but no radical sociopolitical transformations until the French Revolution. This more recent historical experience also suggests that environmental or economic disasters do not necessarily lead to social breakdown or collapse.

However, the late Medieval to early Modern period in western Europe did see a continuing and fundamental shift of food producing and distribution strategies, to a good degree in response to a series of wrenching environmental crises. After the Medieval Warm Period (~850–1280 CE), and until the Little Ice Age (~1570–1860 CE), there were three centuries marked by extreme climatic perturbations (63, 64) analogous to the seemingly unprecedented disturbed weather of the past 25 y. These environmental changes and their context are encapsulated in the SI Text because they suggest a transition of focal length, organization, and available information, in approaching the intersection of diachronic and synchronic perspectives.

The modernization of western European food production during the past millennium, as painful as it was for the many, was decentralized and protracted. It reveals unexpected resilience and the ability of people under extreme stress to try new solutions. It appears that, after overcoming initial, ideological dissonance, people can indeed come together to support change. The key differences with our historical case studies are structural. Ancient Egypt and Mesopotamia were authoritarian, with no feasible bottom-up options, whereas western European societies were, to a surprising degree, corporate and participatory (65), with a high tolerance of individualistic behavior (66). Change is difficult to implement in dictatorships that cow their citizens by force, silence dissent, and stifle initiative. Megacrisis can best be confronted by flexibility and the cohesion of most social classes or components within a particular polity or region.

Historical monitoring across long timescales is vital to situate the present or apply to contemporary or future problems of sustainability (67–69). However, it does not provide simple prescriptive insights about the risks of global change, counter-ecological behavior, or sustainability (67–69). What it does do is suggest that all too much of the alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. Our diachronic investigation implies that the specter of historical collapse has become
a red herring. The pundits should instead turn their attention to information diffusion and socioeconomic integration, across class lines and different spatial scales. Modern states, even when marginally dysfunctional, have significant advantages over their archaic counterparts in terms of administrative experience, information, and an increasingly educated and engaged citizenry. Given the increasing frequency and scale of disastrous climatic events, today there is an urgent need for competing societal elites to downplay ideological difference and face the realities of global climate change, anticipating its momentous socioeconomic implications. These diachronic insights highlight the importance of information: better understanding, enlightened leadership, and opportunities for broad participation and fresh ideas.

ACKNOWLEDGMENTS. Sheryl Luzzadder Beach, Georgina Endfield, David Helgen, Andrew Dougmore, Paul Hudson, Elisabeth Butzer, and Paul Butzer contributed critical suggestions and feedback. Cartographic rendering was done by John Oswalt, and Anwar Soumy-Njité contributed to the library search.

Supporting Information

Butzer 10.1073/pnas.1114845109

Environmental Determinism and the Akkadian Collapse

In 1911, Ellsworth Huntington (1) launched the hypothesis that degradation of the Mediterranean world and the decline of Classical civilization were a result of desiccation (i.e., climatic aridification). This had led to nomadic expansion, attendant deforestation, and soil loss. Huntington (2) also claimed that periodic nomadic outbursts from central Asia were a result of climatic fluctuations. Recourse to such “pulsations”—as purported evidence for climatic cycles—has enjoyed great longevity. Climatic change had become a major determinant in “decline.”

Deterioration eventually fell into disfavor, but Harvey Weiss and others (3) claimed that, after 2200 before common era (BCE), a mysterious “volcanic winter” of eolian ash triggered a widespread environmental disaster lasting three centuries, forcing abandonment of the early Bronze Age city of Tell Leilan in northeastern Syria and “collapse in the Aegean, Egypt, Palestine, and the Indus” (4). This invocation of climate as a prime mover was applauded by some hard scientists in favor of a “Leilan Event” (in Upper Mesopotamia) and an Akkadian collapse in the Euphrates floodplain (Lower Mesopotamia) as a consequence of abrupt climatic change. Bold correlations were posited between peaks in deep-sea cores of the Arabian Sea, wiggles in the stable isotopes of an Italian cave flowstone, or microstratigraphic identification of eolian activity in Nebraska, as a global case for climatic forcing as a major agent of social change in distant Mesopotamia or Egypt (5–10). These papers show a nontrivial spread of 400 y for the beginning date, and suggest that hemispheric teleconnections remain premature.

Problems with Paleoclimatic Evidence. For one, the local environmental evidence from Leilan (2) is unsatisfactory, and the authors have fundamentally changed their explanations several times. Initially a volcanic winter was posited, but not supported by a corresponding acid peak in Greenland ice cores (11). Traces of volcanic glass in sediments at Leilan (4) are modest and limited to a very few profiles and levels. The authors subsequently downplayed the pyroclastics, to opt for a megadrought caused by “massive smoke injection” from unverified “extensive wildfires” that modified land/sea temperature gradients—a spurious explanation. More recently, the soils specialist of the project abandoned the megadrought theory, arguing instead for dust raised by an extraterrestrial body (12), a notion that has found little support. The peculiar mineral grains cited at nearby Tell Brak were found in a thin sediment lens below a structure built by the Akkadian ruler Naram-Sin (~2291–2255 BCE) (13).

Local, high-resolution isotope records, such as speleothems of Soreq Cave (Israel), have been invoked to argue for the megadrought, but they suggest only minimal change after 2400 BCE, whereas some earlier, wide divergences of the 18O and 13C isotope curves are difficult to explain for a complex cave environment (14). Instead, 13C isotopes from barley grains, a homogenous medium and from good archaeological contexts in Syria (15), give consistently low negative values (i.e., drier climate) after approximately 2500 BCE and exhibit nothing extraordinary.

The discharge of the Euphrates should be a key criterion for such a regional megadrought. The isotopic and salinity records of Lake Van, near its headwaters, do not support such an event (ref. 16; despite lingering problems with a floating varve chronology). Neither do settlement numbers and canal extensions in lower Mesopotamia: the number of sites mapped for the Akkadian period increased 30% vs. that of the preceding early dynastic II/III period, whereas those of the subsequent Ur III-Isin-Larsa phase more than doubled (ref. 17, figure 27). Archaeological survey would therefore imply an increase, rather than decrease, of available water in the Euphrates basin from approximately 2300 to 1600 BCE. It is implausible that the Akkadian heartland collapsed because of a megadrought.

Some science literature on the Tell Leilan event identifies a quasi-global paleoclimatic signal approximately 2100 BCE, claimed to be the most incisive of the Holocene record (8). However, whatever arid anomalies there were during the 600-y period after approximately 2500 BCE, they were of insufficient duration or intensity to leave a record in good-resolution pollen profiles of the Near East (18, 19). Similarly, many hundred prime, global multiproxy records fail to support this contention. What the most recent research in the Mediterranean area and Near East does show is that the Holocene record was marked by (i) a wet early Holocene, with very rainy winters (11,000–7500 BP in calibrated years); (ii) a drier, transitional mid-Holocene, with reduced seasonality and bioclimatic oscillations, until 4000 BP; and (iii) a trend to aridification and more contemporary conditions (11, 19). However, in central Asia and Anatolia, the early Holocene was arid, the mid-Holocene wet (16, 20). The observed isotopic shifts and events fit comfortably into such a framework, without recourse to extreme anomalies or climatic change.

Other Explanations. In short, the scientific evidence does not support the hypothesis of a catastrophic megadrought as a prime mover for collapse of either the Akkadian empire or a synergistic group of Near Eastern civilizations. What then does explain the abandonment of Leilan? In the semiarid agricultural belt of eastern Syria, settlement patterns were dynamic, with urban growth or settlement-cluster expansion in some areas, and ruralization or local abandonment in others, with no case for mass migrations (21). In western Syria, a good number of cities were destroyed, presumably by Akkadian military campaigns (ref. 22, table 1). The desertion of Leilan coincided with this imperial unrest, which ended with disintegration of an internetworked world-economy, once extending from the Aegean to the Indus Valley (ref. 22, pp. 280–287; and ref. 23). The triggering mechanism was not a competition between farmers and pastoralists (ref. 21, chap. 7; and ref. 24), but a relentless expansion of Akkadian under Sargon or his grandson Naram-Sin that destroyed the entrepot role of Syria at the nexus of this economic system. The checkerboard of destroyed cities suggests unbridled warfare, and much accumulated “capital” would have been lost, leaving the ability of the system to rebuild that capital severely impaired. Whether less destructive environmental stressors may have been a coagency in regional transformation toward the end of the early Bronze age remains to be demonstrated by more careful sociohistorical and paleoclimatic analyses.

Environmental Degradation and Human Impact

The links between deforestation and soil erosion were already understood by Plato (~370 BCE) (25), and the agronomist Columella (~65 common era (CE)) (26), who recommended terracing of freshly cleared hillsides to avoid erosion. A modern development of these themes awaited George Perkins Marsh (27) in 1864. Marsh was a leading conservationist who had experienced clear-cutting in Michigan and later spent 20 y as a traveler and diplomat in Italy and the Provence. He discussed soil erosion and disastrous alluvial events, lamenting the impacts of what he regarded as slovenly Papist land use in the Mediter-
ranean basin. Unlike Huntington, who blamed climatic change, Marsh saw an impending destruction of the Mediterranean environment as anthropogenic.

Although Marsh was influential for environmental conservation in the United States, a related thesis championed by Colonial officers of Britain and France gained preeminence in the Mediterranean orbit. As argued by Sarah Harris (28, 29), landscape ecology was reduced to an agricultural–pastoral dialectic, or one that cast “backward,” indigenous practices as implicit resistance to Colonial imposition of a more rational husbandry. In whatever structural form, unsustainable resource management favors biotic degradation, soil loss, slope failure, and gullying or accelerated alluviation. At more sophisticated diagnostic levels, it introduces matters of scale, biotic mosaics, habitat complexity, and local cultural perceptions of resource impairment, productivity, and stress (30).

Unlike the climatic change model, the anthropogenic degradation counterpart has continued to evolve. It reemerged as “desertification,” to attract support from international agencies, but then generated controversy when its proponents failed to appreciate the cogency of climatic anomalies in the Sahel or Karoo (31, 32) or incorrectly diagnosed vegetation dynamics as desertification in the Mediterranean world (33). With increasing ideological undertones, anthropogenic degradation also became central to the 1992 polemic of Colonial despoliation of Latin America (refs. 34, 35 to arg. 36), consistent with Marsh’s bias against what he believed was improvident and destructive Mediterranean land use (27). Unskilled application of such positions in some examples of world-system history has also led to oversimplification, dependence on inferior digests of environmental evidence, and ignorance of culturally conditioned decision-making (see ref. 37).

Collapse and degradation has entered the global change debate, and public interest in doomsday scenarios and apocalyptic predictions appears to have grown since destruction of the World Trade Center. News media publish alarming scenarios that do not necessarily reflect mainstream scientific views. There is anxiety today, in an era of exceptional storms, rains, cold, heat, or drought that have resulted in major revision of official climate normals. In effect, it has become popular to propose links between global environmental change and unsustainable policies or practices that may be conducive to a cascade of overpopulation, degradation, and societal collapse (38).

Diamond Hypothesis. Jared Diamond’s comprehensive work Collapse (2005) (39) elegantly situates environmental mismanagement and unsustainable resource degradation as a potential agent of collapse, in conjunction with factors like climate change. Among his historical examples, he singles out several societies as responsible for unsustainable environmental damage, despite their modest, preindustrial technology. The papers of this PNAS Special Feature address a number of such cases, to show that the arguments oversimplify much more complex social–ecological relationships, and Terry Hunt (40) dissects misunderstandings about the salient case of Easter Island, documenting intensification (lithic mulching) and remarkable indigenous resilience before slave hunters and introduced disease destroyed that society.

The segment of Diamond’s Collapse (39) that is focused on contemporary problems also deals with some complicated issues in simplistic terms. Thus, the genocide in Rwanda is attributed to “overpopulation,” despite specialist views that ground the underlying ethnic hatred in the legacy of Colonial history. An item-by-item critique of Collapse is offered by Jennifer Marohasy (41), who takes to task the chapter that places contemporary Australia on the brink of destruction because of careless land management. With up-to-date information, she contradicts almost every claim in regard to agricultural decline, soil loss, salinization, or deforestation. In fact, rangeland managers in the Outback develop and disseminate their analytical insights for realistic planning and practice at individual, state, and national scales (42). An overall increase in forest cover is also supported by historical evidence that woodlands in New South Wales today are much the same as those reported by the earliest European travelers, who had already encountered prehistoric gullies (43).

The informal narrative of Collapse (39) revolves more around an author’s opinions or advocacy than it does his stellar primary research. The book can also be criticized for the offhand treatment of societal issues, which has been faulted in a book-length counterpoint by leading anthropologists (44).

Further Considerations of Collapse

The two analytical sketches appended here examine other Near Eastern collapse scenarios to highlight the fundamental importance of social factors and the protracted rather than “abrupt” time frames for collapse.

Greco-Roman Fayum Oasis, Egypt. A different Near Eastern irri- gation collapse illustrates the complexity of stability versus cumulative decline. Under Ptolemy II (284–246 BCE) and Ptolemy III (246–221 BCE), the Macedonian dynasty that succeeded Alexander the Great embarked on a major project of development and colonization in the Fayum depression of Egypt (45–47). Rather than concentrate on building more local canal networks, Ptolemy II sought to control the inflow of Nile water by an effective regulator dam, to drain part of the lake, reclaim extensive marshlands, and greatly expand irrigation onto higher ground by outer rings of master canals (Fig. S1). Greek veterans as well as Egyptians from the Delta were planted on the new lands, focusing on strings of new towns, more than 40 of which have left informative archives of papyrus documents, ostraka, or codices (46) that vary in number over time from a trickle.

The Fayum colonies were first plunged into serious crisis during the Antonine plague of the late second century CE (87), which coincided with a long decline of Nile flood levels (see ref. 49). The second crisis accompanied the Roman anarchy of the middle of the third century CE, at a time of continuing weak Nile floods. A number of new towns were now abandoned for several decades, but most were reoccupied, although shrunken in size. Neglect of the peripheral master canals may also have been responsible. The third crisis began approximately 340 CE, leaving two of three master canals dysfunctional and at least eight towns deserted. In one town (Karanis), local agriculture was no longer possible, and its citizens had to commute to work on farms of older communities (50, 51), implying that the water supply was inadequate. At least five more towns were abandoned in the fifth century, and the same number were abandoned again in the sixth, during times of bloody religious unrest between rival Christian denominations, but still before the Arab Conquest (642 CE). During the next 300 y, there was some recovery, but in the end, at least seven further sites were fully deserted, until renewed literary activity in Coptic or Arabic (47) suggests some qualified stabilization.

The Fayum study is of interest because a diverse group of sources allows spatial representation of settlement abandonment or expansion during a hemicycle of collapse and partial recovery. Figure S2A illustrates a progressive desertion of most Ptolemaic towns across some 700 years—at first tentatively (mid-third c.), then definitively (late fourth c.), with failure of most of the original high canals before the time of the Conquest. All of the new lands had been given up by the ninth c, as Christian settlements were retracted to the pre-Ptolemaic margins of cultivation (Fig. S2B) (52–54). Depopulation probably reflects unsuccessful Christian rebellions and inferred intrusion of Muslim pastoralists. The refined hydraulic works (waterwheels, norias, watermills, masonry-lined canals) described by the active
governor Nabulsi in 1245 CE (53–55), probably go back to an earlier era, but despite his complaints about his predecessors, agriculture was thriving again, judging by Nabulsi’s many listings of palm groves, orchards, vineyards, or gardens. The population had been socially transformed, by adoption of Afro-Asiatic tribal identities (see 54). Yet the water supply was inadequate on the northeastern and western margins of the oasis (56), where only wheat or barley were planted and villages were depopulated (54). What he did accomplish, as his manuscript points out, was to increase the ingress of flood waters by a newly designed regulator at Lahun.

A demographic high point is recorded in some detail by a land, settlement and tax-liability census of 1343 CE (57, 58) (Fig. S2C). But with a cultivated area of ~680 km², the cultivated area was still about 40% less than in 200 BCE. Between 1343 and 1800 CE (the Napoleonic map and gazetteer) the number of settlements had declined from 100 to 69, as a consequence of the Black Death (1348–51) (59), Nile flood variation, and increasing misgovernment, insecurity and disease. Figure S2D verifies a thinning out of the settlement grid, a smaller number of large towns, and partial desertion of the northeast and far south. A full return to early Ptolemaic prosperity was delayed until ~1900 CE. In effect, this set of maps (Fig. S2A–E) represents a cartographic illustration of collapse and recovery based on population and ecological change.

This Fayum narrative is about a royal project of agricultural expansion and urban development, beginning with innovations but continuing as a matter of successful management. Structural and Nile flood or inflow problems represented energy fluxes and adjusting feedbacks. In the end, this curiously modern project failed, and the Fayum returned to the status quo, bringing major population retraction, decreasing productivity, and presumed human hardship. Probably the greatest ecological disaster in recorded Egyptian history, this Fayum breakdown might have been avoided by enlightened management, better security, and greater technological innovation (56) at the national scale.

Axum, Ethiopia. For late Classical times, the literate civilization of Axum on the northern Ethiopian plateau (61–63) offers an African example of collapse. Related archeology begins at approximately 50 CE, and coinage serves to date the period to approximately 270 to 630 CE. Ranked as one of the four world kingdoms in its time, Axum’s prestige was grounded in long-distance trade, with an industrialization change the outcomes? Did increasing economic integration raise the thresholds of systemic equilibrium? Such questions have no easy answers, but they offer more direct diachronic perspectives for mitigation of impending global crises. For example, poor agricultural weather, compounded by livestock epidemics, created a famine disaster in 1315 to 1317 (66, 67). Extreme precipitation events in the 1340s (68) led to phenomenal floods, preceding the Black Death (1348–1349) and its echoes, to cause drastic depopulation, labor shortages, and deflation (69, 70), in combination with soil erosion on marginal lands, rural abandonment on a large scale saw 40,000 settlements (19% of the total) deserted in Germany at approximately 1350 to 1500 CE. The Black Death catastrophe was preconditioned by extraordinary climatic anomalies and unequivocally triggered by a particularly deadly pathogen, both factors reinforced by famine and periodic recurrences. The result was a demographic breakdown, with distressing social and cultural repercussions. The array of natural disasters continued. Along the North Sea coast from Flanders to Denmark, fierce but sporadic storm surges drowned tens of thousands of people between 1164 and 1634 CE, with the sea spilling 2 m over coastal dikes; large tracts were permanently lost, leaving little more than a string of barrier islands (71–75). Such extreme events had followed upon two centuries of strong population growth, with settlement expanding into vulnerable environments and testing the limits of agricultural productivity. During Late Medieval times, settlement was in retraction from France to Poland. The Black Death, like the introduction of Old World diseases to the western hemisphere after 1492, can be considered as example of collapse. The sociopolitical system of Western Europe was badly shaken but survived.
Demographic growth only resumed in the 16th century, until poor growing seasons and severe frosts created unprecedented famines at approximately 1570 to 1600, accentuated by interdiction of food transports and declining soil fertility when livestock numbers were reduced to grow more crops (69, 70, 76). But now there was no collapse. Traditional strategies began to be revised: stock raising was expanded but animals were stalled and fed with hay, and new crops and hayfields; roads were gradually improved to transport food to centers of famine. This montage of intensification processes reduced mortalities and vulnerability to severe Little Ice Age crises of the late 17th century. The last great Europe-wide famine (1816–1817), as result of a catastrophic volcanic eruption in Indonesia, still saw great suffering and social turmoil, but it was eventually contained by long-distance food transport (77, 78). Nevertheless, it set the tone for 19th-century economic migration to the New World.

Driven by climatic perturbations, extreme interannual variability, occupation by volcanic ash, or plant and animal diseases, Late Medieval and Early Modern subsistence crises created great anxiety (e.g., witch burnings), impacting demographic pyramids, and triggering extensive degradation. However, instead of collapse, fundamental agricultural and economic transformations eventually emerged under duress, in forms such as specialized stock raising, improved farming (e.g., the "new husbandry"), technological innovation, better communications, and internal or external migration. Furthermore, such changes were grounded on a patchwork of processes that spanned centuries and was accelerated by fresh environmental crises or social unrest. Change often came at a high societal cost, but rarely provoked breakdown, despite nutritional stress and strong, long-term demographic fluctuations (77). That is the overarching scenario of challenge and transformation in Western Europe during more recent historical times. Change played out differently in specific areas, as based on experience, experimentation, innovation, information exchange, and a degree of consensus. It involved both the grassroots and the elites, the open questions being cybernetic, structural, and cultural.

Fig. S1. Environmental context for Egypt’s Fayum Oasis. Irrigation was coupled with the course of Greco-Roman colonization and abandonment. For interpretation, see Fig. S2 A–D. Based on multiple sources, satellite imagery, and field observations.
Collapse and Recovery in the Fayum Oasis. With failure of the Ptolemaic master canals during Late Roman times (A), more than half the cultivated land was abandoned. Surviving Coptic Christian settlement towards 800 CE had been reduced to a much smaller, internal canal system (B). Population and productivity greatly increased in High Islamic times to 1300 CE (C) but cultivated land was ~40% less than in 2nd c. CE. After the Black Death (1348 CE) settlement number declined permanently and mismanagement left 10% of the land deserted (D). Changing shoreline positions of the lake are unknown. See text.